

Constellation-X
Facility Science Team Meeting
Boulder, CO
22 February 2008

Constellation-X Science Panel

Plasma Diagnostics and Atomic Astrophysics

Nancy S. Brickhouse

Harvard-Smithsonian Center for Astrophysics

Panel Members

Nancy Brickhouse, Chair (CfA) **Greg Brown (Lawrence Livermore National Lab)** Li Ji (MIT) Vinay Kashyap (CfA) Masao Sako (U. Penn) Wilt Sanders (NASA HQ) Daniel Savin (Columbia U.) Dave Schultz (Oak Ridge National Lab) Randall Smith, Facilitator (NASA/GSFC) Wayne Waldron (Eureka) **Brad Wargelin (CfA)**

Panel Goals

- Develop prioritized "to do" list focused on Con-X science
 - Atomic theory
 - Atomic measurements
 - Plasma experiments
 - Astrophysics models
- Maintain long term focus
- Provide information and feedback to the other science panels
- Solicit inputs from the other science panels
- Develop an approach that parallels how the other panels are working

Decadal Survey

- AAS Working Group on Laboratory Astrophysics
 - Established May 2007
 - 12 members (incl. Brickhouse and Savin)
 - Broad (sub-mm to X-ray, nuclear physics, plasma physics, & chemistry)
 - Will sponsor 3 day session at 2008 summer AAS
 - Will participate in decadal survey
- NASA APRA program vs mission-specific programs

Organizing Schemes

The shopping list

Diagnostics approach

Case: Ne IX G-ratio

Global models approach

Case: Abundance studies

Astrophysics-driven approach

Case: Sensitivity testing

The Shopping List

- Collisional ionization rate coefficients
- Photoionization rate coefficients
- Radiative recombination rate coefficients
- Dielectronic recombination rate coefficients
- Collisional excitation rate coefficients
- Oscillator strengths
- Wavelengths
- All elements < Z=30
- All ionization states in X-ray regime
- Fluorescence yields
- Inner shell lines
- Molecular/ solid absorption cross sections
- Charge exchange rate coefficients
- Comprehensive spectral models

PRO: Comprehensive

CON: Time consuming, shopping not popular with review panels

Diagnostics Approach

- Hydrogen-like Lyman series
- Helium-like triplets
- Fe XVII "3C"/ "3D"
- Atomic theory is capable of reaching 5 to 10% accuracy for selected line ratios.
- Atomic experimental verification is crucial.
- Systematic errors from experiments can be ~7 to 10%.
- Close collaboration between theory and experiment needed.

PRO: Produce reliable diagnostics for standard cases (e.g. ionization equilibrium) to test against.

CON: Resource-intensive, can only be used for most important data

Ne IX G-ratio Theory and Experiment

New calculations (Chen et al. 2006, PRA)

G-ratio agrees with LLNL EBIT measurements of Wargelin (PhD Thesis 1993)

Derived T from Capella in better agreement (Smith et al. in prep)

Global Models Approach

- Emphasizes completeness of spectral features (rather than accuracy)
- More robust than a few line ratios
- Requires treatment of systematic uncertainties (but this is hard, no clear agreement on how to simplify this)
- Helps eliminate blending worries
- Most rates 20 to 50% accurate
- Plasma experiments with spectroscopy
- Useful (maybe necessary?) for abundance determinations
- PRO: Uses all the observational data
- CON: Hard to define generically when the models are good enough

Determining Elemental Abundances: charge state balance and excitation

Results for Iron

Bryans et al. 2007

Astrophysics-Driven Approach

- Use observational goals to determine priorities
- Focus on key science
- Go beyond standard (over-simplified?) models
 - Departures from ionization equilibrium
 - Non-Maxwellian electron energy distributions
 - Magnetic field effects
 - Optical depth effects
 - Mixed collisional and photoionization
 - Photoexcitation

PRO: This is the most effective way to set priorities.

CON: Tends to be ad hoc, case-by-case basis.

Effects of Atomic Data on Thermal Stability

Chakravorty et al. 2008

Sensitivity Testing Needs to Include Effects from Atomic Data

Capella DEM Models

Courtesy of Vinay Kashyap

Conclusions

- Proper understanding of the atomic and plasma physics is required to understand the data from celestial sources.
- This requires controlled experiments and complete, detailed theory, which in turn requires resources and time.
- Stable funding, in particular for experimental groups with large infrastructure, needs to be in place. Do we have the proper facilities?
- Problems with the current models are currently preventing full use of current observations.
- Planning for the future requires that we first identify areas of greatest uncertainty, highest science priority, and means for improvement.